Загрязнение окружающей среды углеводородами

Полезное по теме: "Загрязнение окружающей среды углеводородами" от специалистов простым языком. Если необходимо уточнить актуальность на 2020 год, а также задать вопрос, то обращайтесь к дежурному юристу.

Диоксины и польциклические ароматические и хлорсодержащие углеводороды – потенциально опасные загрязнители пищевых продуктов

4.2.1. Диоксины и диоксиноподобные соединения

К диоксинам — полихлорированным дибензодиоксинам (ПХДД) относится большая группа ароматических трициклических соединений, содержащих от 1 до 8 атомов хлора. Кроме этого, существует две группы родственных химических соединений — полихлорированные дибензофураны (ПХДФ) и полихлорированные бифенилы (ПХБ), которые присутствуют в окружающей среде, продуктах питания и кормах одновременно с диоксинами.

В настоящее время выделено 75 ПХДД, 135 ПХДФ и более 80 ПХБ. Они являются высокотоксичными соединениями, обладающими мугагенными, канцерогенными и тератогенными свойствами.

Источниками диоксина и диоксиноподобных соединений могут быть предприятия металлургической, целлюлозно-бумажной и нефтехимической промышленности. В основном диоксины и диоксиноподобные соединения образуются при сгорании синтетических покрытий и масел, уничтожении отходов в мусоросжигательных печах, содержатся в выхлопных газах грузовых автомобилей. Для снижения отложений свинца в моторное топливо, содержащее алкилсвинец (0,15 г свинца в 1 л бензина), добавляют дихлорэтан в качестве «мусорщика».

Основными представителями рассматриваемой группы соединений являются 2,3,7,8-тетрахлордибензопарадиоксин (ТХДД), 2,3,7,8-тетрахлордибензо-фуран (ТХДФ).

Одним из наиболее токсичных и хорошо изученных диоксинов является ТХДД. ТХДД — наиболее опасный яд для человека. Отличается высокой стабильностью, не поддается гидролизу и окислению, устойчив к высокой температуре (разлагается при 750 0 С), действию кислот и щелочей, невоспламеняем, обладает высокой растворимостью в жирах.

О токсичности ТХДД существуют самые различные противоречивые мнения. Так, например, нет единого мнения о его способности вызывать раковые заболевания у человека. Однако установлено, что в присутствии ТХДД усиливается воздействие на человеческий организм свинца, кадмия, ртути, нитратов, хлорфенолов, радиации. Расчетная среднесмертельная доза для человека при однократном оральном поступлении составляет 0,05-0,07 мг/кг, расчетная минимальная токсическая доза при хроническом оральном поступлении — 0,1 мкг/кг.

Отравление ТХДД вызывает хлоракне, которое выражается в трудно излечимом поражении кожи, после чего остаются шрамы. Кроме того, ТХДД вызывает тяжелые повреждения печени, сопровождающиеся массовым распадом клеток печени и поступлением желчи в кровеносную систему. В результате этого возможна глубокая потеря сознания (кома), что приводит к летальному исходу. При беременности ТХДД может привести к патологии организма ребенка.

ПХДФ. После проникновения дибензофуранов через кишечный эпителий происходит их связывание с белками крови, причем основными органами, где они аккумулируются, являются печень и жировые ткани.

ПХДФ оказывают тератогенное и отравляющее действие на зародыши. Смерть эмбрионов проявляется уже при очень низких концентрациях. Кроме того, наблюдаются явно выраженные уродства. Наиболее часто встречается такое уродство, как «волчья пасть».

Полихлорированные бифенилы (ПХБ) во многом сходны с ПХДД и ПХДФ. Токсичность ПХБ заметно возрастает с увеличением содержания в них хлора. Отравление ПХБ вызывает хлоракне, изменяет состав крови, структуру печени и поражает нервную систему. Эти соединения обладают также сильным канцерогенным действием.

Период полураспада этих соединений в природной среде составляет от 10 до 100 лет, что значительно больше, чем для ДДТ. Эти чрезвычайно устойчивые вещества применяют как жидкие теплоносители в холодильных установках, как пластификаторы в пластмассах. Несмотря на малорастворимость ПХБ в воде и высокую температуру кипения, они встречаются повсеместно — в воздухе, почве и воде, включаясь, таким образом, в пищевые цепи и системы, активно мигрируют по пищевым цепям, особенно в жиросодержащих объектах. В организм человека диоксины поступают в основном с продуктами питания (98-99 % от общей дозы). Среди основных продуктов опасные концентрации этих веществ обнаруживаются в мясе, молочных продуктах и рыбе. Следует отметить способность диоксинов накапливаться в коровьем молоке, где их содержание в 40-200 раз выше, чем в тканях животного. Источниками диоксинов могут быть картофель, морковь, другие корнеплоды, так как основная часть диоксинов кумулируется в корневых системах растений, и только 10 % — в наземных частях. Человек массой тела 70 кг получает с пищей в течение дня в среднем 0,35 нг/кг ТХДД.

Особое внимание следует уделить проблеме содержания полихлорированных бифенилов и диоксинов в грудном молоке, что является фактором риска для здоровья детей раннего и старшего возраста.

Допустимая суточная доза (ДСД) для человека согласно рекомендации ВОЗ — 10 нг/кг. Аналогичный уровень принят в России.

ДСД является отправной точкой для нормирования содержания диоксинов в различных продуктах питания и воде. Максимально допустимые уровни (МДУ) их содержания в основных группах пищевых продуктов составляют, нг/кг (в пересчете на ТХДД):

— молоко (в пересчете на жир) — 5,2 (Германия — 1,4);

— рыба (съедобная часть) — 11,0, в пересчете на жир — 88,0;

— мясо (съедобная часть) — 0,9, в пересчете на жир — 3,3;

— пищевые продукты — 0,036 (США — 0,001);

— вода объектов хозяйственно-питьевого и культурно-бытового назначения -20 нг/л (США и Германия — 0,01).

В России предстоит большая работа в области идентификации и нормирования диоксинов. Принятый в настоящее время норматив по воде труднообъясним с гигиенических позиций, так как это продукт ежедневного и практически неконтролируемого потребления.

4.2.2. Полициклические ароматические углеводороды (ПАУ)

Полициклические ароматические углеводороды (ПАУ) широко распространены в окружающей среде. Они образуются в процессе горения и содержатся во многих природных продуктах. Представители этой группы соединений обнаружены в выхлопных газах двигателей, продуктах горения печей и отопительных установок, табачном и коптильном дыме. Полициклические ароматические углеводороды присутствуют в воздухе, почве и воде.

Загрязнение почвы одним из ПАУ — бенз(а)пиреном является индикатором общего загрязнения окружающей среды вследствие возрастающего загрязнения атмосферного воздуха.

Накапливаемый в почве бенз(а)пирен может переходить из корней в растения, то есть растения загрязняются не только с осаждающейся из воздуха пылью, но и через почву. Концентрация его почве разных стран изменяется от 0,5 до 1 000 000 мкг/кг.

В воде в зависимости от загрязнения найдены различные концентрации бенз(а)пирена: в грунтовой — 1-10 мкг/л, в речной и озерной 10-25 мкг/л, в поверхностной — 25-100 мкг/л.

ПАУ чрезвычайно устойчивы в любой среде, и при систематическом их образовании существует опасность их накопления в природных объектах. В настоящее время 200 представителей канцерогенных углеводородов, включая их производные, относятся к самой большой группе известных канцерогенов, насчитывающей более 1000 соединений.

Читайте так же:  Право потерпевшего на возмещение вреда причиненного преступлением

По канцерогенности полициклические ароматические углеводороды делят на основные группы:

1 — наиболее активные канцерогены — бенз(а)пирен (бп), дибенз(а, h)антрацен, дибенз(а, i)пирен;

2 — умеренно активные канцерогены — бенз(h)флуорантен;

3 — менее активные канцерогены — бенз(е)пирен, бенз(а)антроцен, дибенз(а, с)антрацен, хризен и др.

Бенз(а)пирен попадает в организм человека не только из внешней среды, но и с такими пищевыми продуктами, в которых существование канцерогенных углеводородов до настоящего времени не предполагалось. Он обнаружен в хлебе, овощах, фруктах, растительных маслах, а также обжаренном кофе, копченостях и мясных продуктах, поджаренных на древесном угле.

Условия термической обработки пищевых продуктов оказывают большое влияние на накопление БП. В подгоревшей корке хлеба обнаружено БП до 0,5 мкг/кг, подгоревшем бисквите — до 0,75 мкг/кг. Продукты домашнего копчения могут содержать БП более 50 мкг/кг. Образование канцерогенных углеводородов можно снизить правильно проведенной термической обработкой.

Сильное загрязнение продуктов полициклическими ароматическими углеводородами наблюдается при обработке их дымом.

В плодах и овощах бенз(а)пирена содержится в среднем 0,2-150 мкг/кг сухого вещества. Мойка удаляет вместе с пылью до 20 % полициклических ароматических углеводородов. Незначительная часть углеводородов может быть обнаружена и внутри плодов. Яблоки из непромышленных районов содержат 0,2-0,5 мкг/кг бенз(а)пирена, вблизи дорог с интенсивным движением — до 10 мкг/кг.

Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, особенно при наличии в продуктах элюэнтов (веществ, экстрагируемых в растворителе). Так, например, эффективным элюэнтом ПАУ является жир молока, который экстрагирует до 95 % БП из парафино-бумажных пакетов или стаканчиков.

С пищей взрослый человек получает в год 0,006 мг БП. В интенсивно загрязненных ПАУ районах эта доза возрастает в 3 и более раз. Предполагают, что для человека с массой тела 60 кг ДСД БП должна быть не более 0,24 мкг. ПДК БП в атмосферном воздухе — 0,1 мкг/100 м 3 , в воде водоемов — 0,005 мг/л, в почве — 0,2 мг/кг.

При попадании в организм полициклические углеводороды под действием ферментов образуют эпоксисоединение, реагирующее с гуанином, что препятствует синтезу ДНК, вызывает нарушение или приводит к возникновению мутаций, способствующих развитию раковых заболеваний, в том числе таких видов рака, как карциномы и саркомы.

Учитывая, что почти половина всех злокачественных опухолей у людей локализуется в желудочно-кишечном тракте, отрицательную роль загрязненной канцерогенами пищевой продукции трудно переоценить. Для максимального снижения содержания канцерогенов в пище основные усилия должны быть направлены на создание таких технологических приемов хранения и переработки пищевого сырья, которые бы предупреждали образование канцерогенов в продуктах питания или исключали загрязнение ими.

4.2.3. Хлорсодержащие углеводороды

С 1970-х г. актуальной стала проблема загрязнения окружающей среды алкилхлоридами — хлорсодержащими углеводородами. Хлорированные алканы и алкены особенно часто используются в качестве растворителей либо как материал для ряда синтезов. Из-за сравнительно низких температур кипения (40-87 °С) и более высокой, чем у полициклических ароматических углеводородов, растворимости в воде (около 1 г/л при 25 °С) алкилхлориды широко распространились в окружающей среде. Особо летучие соединения могут проникать даже через бетонные стенки канализационных систем, попадая, таким образом, в грунтовые воды. Поскольку у хлоралканов и хлоралкенов сильнее выражен липофильный, чем гидрофильный, характер, они накапливаются в жировых отложениях организма. Это предопределяет их накопление в отдельных звеньях цепи питания.

Эти вещества подразделяют на две группы по их воздействию на печень человека:

1) соединения, оказывающие сильное действие на печень — тетрахлорметан, 1,1,2-трихлорметан, 1,2-дихлорэтан;

2) соединения, оказывающие менее сильное действие на печень — трихлорэтилен, дихлорметан.

Из группы сильнодействующих на печень хлорированных углеводородов следует выделить тетрахлорметан, используемый, главным образом, для синтеза фторхлоруглеводородов. Кроме того, его применяют в качестве растворителя жиров. Предполагают, что от 5 до 10 % всего производимого тетрахлорметана попадает в окружающую среду.

К числу хлорированных углеводородов, обладающих некоторым отравляющим действием на печень, относится среди других и трихлорэтилен. Около 90-100 % всего производимого трихлорэтилена попадает в окружающую среду, главная часть — в воздух, остальная — в твердые отходы и сточные воды.

Токсическое действие на человека трихлорэтилена обусловлено его метаболическими превращениями. Под действием монооксигеназы трихлорэтилен превращается в эпоксисоединение, которое самопроизвольно преобразуется в трихлорацетальдегид, реагирующей с ДНК и образующей промутагенные вещества. При систематическом воздействии подобных хлоруглеводородов могут наблюдаться повреждения центральной нервной системы.

Предельно допустимые концентрации хлоруглеводородов — только растворителей — принимаются для всей суммы веществ этой группы.

Некоторые хлоруглеводороды находят применение в качестве пестицидов, например ДДТ и линдан.

Тема 5. Загрязнение продовольственного сырья и продуктов питания веществами и соединениями, применяемыми в растениеводстве.

План:

Не нашли то, что искали? Воспользуйтесь поиском:


http://studopedia.ru/7_188179_dioksini-i-poltsiklicheskie-aromaticheskie-i-hlorsoderzhashchie-uglevodorodi—potentsialno-opasnie-zagryazniteli-pishchevih-produktov.html

Источники загрязнения окружающей среды полигалогенированными углеводородами

Большая часть полигалогенированных углеводородов (ПГУ), за исключением галогенированных диоксинов и фуранов, производилась в виде препаратов для специфического применения, причем нередко в комплексе с другими веществами с различной степенью галогенирования, зависящей от условий дальнейшего использования препарата.

Большинство производимых ПГУ получают путем хлорирования или бромирования нужного углеводорода в присутствии определенного катализатора.

Полихлорированные нафталины выпускали в США, Германии, Великобритании и Франции для использования в качестве защитного слоя резиновых изделий. Когда были выявлены токсичные свойства полихлорированных нафталинов, их стали применять в электронике, при изготовлении кабелей и частично в виде пропитки бумаги для конденсаторов в автомобилестроении.

В большинстве развитых стран полихлорированные бифенилы первоначально использовались в открытых системах в качестве добавки к средствам защиты растений. После запрета их применения в открытых системах полихлорированные и полибромированные бифенилы стали использовать в качестве замедлителей горения многих синтетических и взрывоопасных материалов. Полибромированные бифенилы добавляли в пластмассы, такие как полистирол, полиэстер, полиамидные смолы, лаки и полиуретановые пены, использовавшиеся в производстве огнетушителей. Полибромированные углеводороды применялись при изготовлении мебели и в производстве компьютеров. Как и полихлорированные бифенилы, полибромированные соединения очень устойчивы в окружающей среде, при этом отличаются большей растворимостью в воде и способностью легко выщелачиваться из пластмасс, что определяет их способность быстро распространяться в окружающей среде.

В отличие от полихлорированных бифенилов микропримеси диоксинов в промышленных продуктах никогда не были конечной целью человеческой деятельности, большая часть из них попадала в среду обитания в результате побочных процессов, например при синтезе хлорорганических соединений, в том числе пестицидов, однако их присутствие в настоящее время в окружающей среде не вызывает сомнений. Можно сказать, что диоксины и родственные им по структуре соединения непрерывно генерируются человеческой цивилизацией и поступают в биосферу. Появилось понятие «диоксиновый фон». Источниками этих ядов являются предприятия практически всех отраслей промышленности, где используется хлор, но наиболее опасны химические, нефтехимические и целлюлознобумажные заводы.

Читайте так же:  Приказ о запрете курения в организации

Полихлорированные дибензидиоксины и дибензофураны являются побочными продуктами синтеза пентахлорфенола, в небольших количествах они присутствуют в гербицидахдефолиантах и консервантах древесины, а также образуются в результате высокотемпературного хлорирования при изготовлении других ПГУ, имеющих широкое применение. Диоксины могут образовываться в процессе отбеливания сырой целлюлозы, бумаги или картона хлором при получении так называемой крафтбумаги.

Прекращение производства или использование ПГУ только в закрытых системах может уменьшить их распространенность в окружающей среде, однако не приведет к действительному понижению уровня содержания ПГУ в природных объектах в связи с постоянно растущим количеством отходов и мусора, содержащего ПГУ. Вторичными источниками ПГУ служат сточные воды с мест захоронения твердых промышленнобытовых отходов, а также дымовые газы, образующиеся при сжигании или самопроизвольном сгорании мусора. Некоторые соединения могут синтезироваться стихийно — во время лесных пожаров или на открытых горящих объектах. Иными словами, рано или поздно все ПГУ поступят в воды Мирового океана и в почву. А испарения, атмосферные процессы и воздушный транспорт перенесут вредные соединения в еще имеющиеся экологически чистые районы.

Контаминация окружающей среды происходит при производстве тары и упаковки с использованием в технологии отбеливателей, содержащих хлор. Миграция ПГУ в пищу из пакета зависит от природы продукта. При прямом контакте с упаковкой жиро содержащего продукта, например молока, концентрация ПГУ в нем будет больше, чем в обезжиренном, что обусловлено высокой липофильностью ПГУ и плохой их растворимостью в водных средах.

В нашей стране одним из основных источников диоксинов являются химических, целлюлознобумажные, металлургические предприятия, где используется токсичный хлор. Деятельность этих предприятий вызвала серьезные загрязнения окружающей среды во многих регионах, в том числе отдаленных от места расположения источника. Они же служат первопричиной диоксинового загрязнения мясомолочных продуктов питания, а так же молока кормящих матерей.

Наличие диоксинов в сточных водах текстильных производств обусловлено использованием для отбеливания «жавелевой воды» — водных растворов хлорида и гипохлорита натрия.

Особенно опасны армейские высокотоксичные химические загрязнения. Мощным источником диоксиновых загрязнений является уничтожение химического оружия. Химическое перевооружение 19501960х гг. сопровождалось уничтожением ранее накопленных запасов оружия первого поколения, основу которого составляли хлорсодержащие иприт и люизит. Не менее мощный источник — старты твердотопливных стратегических ракет.

Особо загрязняют атмосферу диоксинами мусоросжигающие заводы, где работы производятся при температуре 800950 °С. При этом образуется максимальное количество диоксинов. При сжигании 1 кг поливинилхлорида (многие виды линолеума, обоев, пластиковые бутылки) выделяется 50 мкг диоксинов. Эффективное их разрушение возможно только при температурах свыше 11501200 °С.

Для подготовки к выполнению Российской Федерацией обязательств в рамках Конвенции о трансграничном загрязнении воздуха на большие расстояния по ограничению поступления полихлорированных бифенилов (ПХБ) в окружающую среду Госкомэкологии России в 1999 г. проведена инвентаризация предприятий, производящих и использующих содержащие ПХБ вещества, а также отходов, содержащих ПХБ.

Согласно данным инвентаризации на декабрь 1999 г., на территории Российской Федерации накоплено около 1,5 тыс. т отходов, содержащих ПХБ, большая часть которых находится в выведенном из эксплуатации электротехническом оборудовании.

Таким образом, в настоящее время существуют разнообразные источники диоксинов и других полигалогенированных углеводородов, проникающих в окружающую среду различными путями. Суперэкотоксиканты этого вида образуются в результате хозяйственной деятельности человека в промышленно развитых странах, особенно в городах, где сосредоточено большинство населения, и имеют, как правило, техногенное происхождение. Основными источниками поступления диоксинов и родственных соединений из окружающей среды в организм человека являются продукты питания, питьевая вода, а также грудное молоко матери.

В природной среде данные суперэкотоксиканты, так же как хлорорганические пестициды, достаточно устойчивы. В биосфере ПГУ быстро поглощаются растениями, сорбируются почвой и различными материалами, где практически не изменяются под влиянием физических, химических и биологических факторов среды. Обладая способностью образовывать комплексы, они прочно связываются с органическими веществами почвы, накапливаются в остатках погибших почвенных микроорганизмов и омертвевших частях растений. Из почв диоксины и другие ПГУ выводятся преимущественно механическим путем. Отличающиеся низкой плотностью комплексы диоксинов с органическими веществами, а также содержащие их остатки погибших организмов выдуваются с поверхности почвы ветром, вымываются дождевыми потоками и в итоге устремляются в низменности и акватории, создавая новые очаги заражения: места скопления дождевой воды, озера, донные отложения рек, каналов, прибрежной зоны морей и океанов.

Период полураспада диоксинов в природе превышает 10 лет. Таким образом, различные объекты окружающей среды являются надежными хранилищами этих токсикантов.

ПГУ отличаются уникальной биологической активностью, распространяются в окружающей среде далеко за пределы своего первоначального местонахождения. Они хорошо растворимы в органических растворителях и практически нерастворимы в воде, обладают высокой адгезионной способностью, что способствует их накоплению и миграции в виде комплексов с органическими веществами и поступлению в воздух, воду и пищевые продукты. ПГУ обладают способностью аккумулироваться в организме и мигрировать по пищевым цепям. В каждом последующем звене пищевой цепи концентрация полихлорированных бифенилов повышается, поэтому наибольшее количество этих веществ концентрируется в организмах хищников. В организм человека ПГУ поступают в основном с пищевыми продуктами, прежде всего с мясом, молоком и животными жирами. В растительных жирах диоксины практически отсутствуют, так как растения не способны усваивать липофильные вещества.

Видео (кликните для воспроизведения).

Диоксины и другие ПГУ могут накапливаться в продуктах, особенно в жирах, не разрушаются при кулинарной и тепловой обработке, сохраняя токсическое действие. Так как ПГУ могут перемещаться на большие расстояния, проблема диоксинов и диоксиноподобных соединений имеет глобальный характер, и в ее решении должны быть задействованы все страны. В связи с опасностью накопления в организме детей диоксинов, поступающих с молоком и молочными продуктами, в том числе с грудным молоком, Всемирной организацией здравоохранения разработана международная программа исследований по этой проблеме.

Читайте так же:  Кодекс об административных правонарушениях является

В настоящее время признано недопустимым присутствие диоксинов в продуктах питания, воздухе и питьевой воде. Достичь же этого практически невозможно, поэтому в большинстве развитых стран различными службами контроля и охраны окружающей среды и здоровья человека установлены нормы допустимого поступления диоксинов в организм человека, а также ПДК или уровни их содержания в различных средах (воздухе, воде, почве и т. д.).

Согласно рекомендациям ВОЗ ДСД диоксинов для человека составляет 10 нг/кг. Аналогичный уровень установлен в России.

Не нашли то, что искали? Воспользуйтесь поиском:

http://studopedia.ru/8_103662_istochniki-zagryazneniya-okruzhayushchey-sredi-poligalogenirovannimi-uglevodorodami.html

Загрязнение земель жидкими углеводородами

ФГОУ ВПО «Саратовский государственный аграрный университет» имени Н.И.Вавилова

по дисциплине «Земельный кадастр и мониторинг земель»

Тема: «Загрязнение земель жидкими углеводородами»

студентки 3 курса; группа – З-31

Катковой Елены Геннадьевны

2. Факторы влияющие на тяжесть загрязнения почв нефтью и нефтепродуктами.

3. Охрана почв от нефтяного загрязнения.

В последние годы проблема нефтяных загрязнений становится все бо­лее актуальной. Развитие промышленности и транспорта требует увеличения добычи нефти как энергоносителя и сырья для химической промышленности. А в месте с тем, это одна из самых опасных для природы индустрий. Ежегод­но миллионы тонн нефти выливаются на поверхность Мирового океана, по­падают в почву и грунтовые воды, сгорают, загрязняя воздух.

Большинство земель в той или иной мере загрязнены сейчас нефтепро­дуктами. Особенно сильно это выражено в тех регионах, через которые про­ходят нефтепроводы, а также богатых предприятиями химической промыш­ленности, использующими в качестве сырья нефть или природный газ. Еже­годно десятки тонн нефти загрязняют полезные земли, снижая ее плодоро­дие, но до сих пор этой проблеме не оказывают должного внимания.

Нефть представляет собой жидкость от желто- или светло-бурого до черного цвета, с характерным запахом. Это смесь углеводов и их производ­ных, каждое из которых может рассматриваться как самостоятельный токси­кант. В ее составе обнаруживается свыше 1000 индивидуальных органиче­ских веществ, содержащих 83–87% углерода, 12–14% водорода, 0,5–6,0% се­ры, 0,02–1,7% азота, 0,005–3,6% кислорода и незначительную примесь мине­ральных соединений; зольность нефти не превышает 0,1%. Нефть легче во­ды: плотность различных видов нефти колеблется от 0,73 до 0,97.

В зависимости от месторождения нефть имеет различный состав как качественный, так и количественный. Больше всего предельных углеводоро­дов содержится в нефти, добываемой в штате Пенсильвания (США). Бакин­ская нефть сравнительно бедна предельными углеводородами, но богата так называемыми нафтеновыми углеводородами, содержащимися в количестве до 90%. Значительно богаче предельными углеводородами грозненская нефть, сураханская и ферганская (Средняя Азия). Основной источник загрязнения почвы нефтью – антропогенная дея­тельность. В естественных условиях нефть залегает под плодородным слоем почвы на больших глубинах и не производит существенного на нее влияния. В нормальной ситуации нефть не выходит на поверхность, происходит это только в редких случаях в результате подвижек горных пород, тектонических процессов, сопровождающихся поднятием грунта. Основные загрязнения нефтью происходят в районах нефтепромыслов, нефтепроводов, а также при перевозке нефти по сухопутным и, особенно, морским магистралям.

В районах наземных нефтепромыслов и нефтепроводов периодически происходят локальные утечки нефти и нефтепродуктов, которые не распро­страняются на большие площади. Гораздо хуже, если утечка происходит из океанической или морской буровой установки или магистрали. В этом случае нефть расползается по воде тончайшей, часто мономолекулярной пленкой на площади в сотни и тысячи квадратных километров, образуя нефтяные пятна. Оказавшись в прибойной зоне, нефтяная пленка выбрасывается на сушу и за­ражает огромные площади побережий, нанося колоссальный вред всему жи­вому в этом районе.

Районы и источники загрязнений нефтью можно условно разделить на две группы: временные и постоянные («хронические»). К временным рай­онам можно отнести нефтяные пятна на водной поверхности, разливы при транспортировке. К постоянным относятся районы нефтедобычи, на терри­тории которых земля буквально пропитана нефтью в результате многократ­ных утечек.

2. Факторы влияющие на тяжесть загрязнения почв нефтью и нефтепродуктами.

Экологические последствия загрязнения почв нефтью и нефтепродук­тами зависят от параметров загрязнения, свойств почвы и характеристик внешней среды.

К первой группе факторов относятся химическая природа загрязняю­щих веществ, концентрация их в почве, срок от момента загрязнения и др. Как было отмечено выше, нефть состоит из многих фракций, существенно различающихся между собой по физико-химическим свойствам. Поэтому их поведение в почве различно.

Наибольшей проникающей способностью обладают легкие фракции, которые капиллярными силами затягиваются на глубину до 1 метра. Будучи загрязнена только легкими фракциями, почва со временем может самоочи­ститься, так как эти фракции обладают низкими температурами кипения и довольно быстро испаряются.

Тяжелые битумные фракции, которые находятся в нефти растворенны­ми в летучих фракциях, проникают не глубже 12 см. При нормальной темпе­ратуре это твердые аморфные вещества, они адсорбируются из раствора поч­венными частицами верхнего слоя, склеивают их, застывают и образуют твердую корку. Такое загрязнение не может быть ликвидировано естествен­ным путем.

Фракции нефти имеют разную токсичность. Поэтому загрязнение тя­желыми фракциями наносит косвенный вред – ухудшает или вообще делает невозможным аэрацию почвы, понижает содержание в почве кислорода, что приводит к снижению количества или вообще вымиранию аэробной части микрофлоры и, наоборот, увеличению числа анаэробов. Наиболее опасно за­грязнение именно самой нефтью: при этом легкие фракции проникают вглубь, а тяжелые создают корку на поверхности, не давая первым испарить­ся. В результате все живое в почве просто гибнет, почва теряет свои хозяйст­венные свойства, становится мертвой.

Ко второй группе факторов принадлежат структура почвы, грануло­метрический состав, влажность почвы, активность микробиологических и биохимических процессов и др.

Чем крупнее частицы почвы, тем легче нефть и нефтепродукты прохо­дят внутрь ее, в ее нижние слои. От структуры почвы также зависит степень аэрации почвы, а следовательно, интенсивность испарения и окисления неф­ти. Влажная почва отталкивает гидрофобные нефть и нефтепродукты, пре­пятствуя ее впитыванию.

К внешним факторам относятся температура воздуха, ветреность, уро­вень солнечной радиации и особенно доля ультрафиолетового излучения в свете, растительный покров и пр.

Чем выше температура воздуха, тем выше скорость окислительных процессов, посредством которых разлагается на воздухе нефть. Соответст­венно в летнее время нефть быстрее разлагается: легкие фракции испаряют­ся, тяжелые окисляются. Зимой, при отрицательной температуре, большин­ство тяжелых фракций переходят в твердое состояние и вообще не окисляют­ся, поэтому основная часть (если не все) процессов разложения нефти и неф­тепродуктов происходят именно летом. Ветер обдувает верхний слой почвы свежим воздухом, создавая динамически повышенную концентрацию кисло­рода над ней, способствуя окислению. К тому же ветер создает токи воздуха в воздушной системе почвы, по крайней мере той ее части, что осталась по­сле загрязнения. Выветривание верхнего загрязненного и окисленного слоя также содействует дальнейшему очищению. Ультрафиолетовое излучение способствует окислительным реакциям и поэтому сильно ускоряет разложе­ ние нефти на поверхности земли и, особенно, на водных гладях.

Читайте так же:  Кодекс рф об административных правонарушениях устанавливает

При сильном нефтяном загрязнении растительный покров обычно вы­мирает. Однако, если загрязнение не очень велико, то он может способство­вать очищению почвы. Образующийся от него за несколько лет раститель­ный опад создает над загрязненным слоем чистый гумусовый слой, богатый аэробной микрофлорой, которая может вести окисление лежащих ниже неф­тепродуктов.

3. Охрана почв от нефтяного загрязнения.

Для охраны почв от нефтяного загрязнения требуется проведение сле­дующих мероприятий:

• Выработка норм допустимого содержания нефти и нефтепродуктов в почве.

• Осуществление анализа хозяйственно важных земель (особенно вблизи нефтепроводов, химпредприятий, буровых установок) на со­держание в них нефтепродуктов.

• Капитальный ремонт или закрытие перечисленных объектов, если установлено, что это предприятие, нефтепровод, буровая установка является источником нефтяного загрязнения.

• Наказание лиц, ответственных за произошедшее загрязнение.

• Рекультивация и санация земель, загрязненных нефтепродуктами.
Специфика загрязнения земель нефтепродуктами заключается в том,

что последние долго разлагаются (десятки лет), на них не растут растения и выживают не многие виды микроорганизмов. Восстановить земли можно пу­тем удаления загрязненного почвенного слоя вместе с нефтью. Далее может следовать либо засев культурами, которые в получившихся условиях смогут дать наибольшее количество биомассы, либо завоз незагрязненной почвы.

Восстановление загрязненной нефтепродуктами земли проходит в три основных этапа:

• удаление загрязненной нефтью почвы;

• рекультивация нарушенного при этом ландшафта;

• мелиорация. На первом этапе вывозится минимальное количество загрязненной

почвы и свозится в места захоронения или используется там, где от нее не требуется плодородных свойств (нанесение дамб и т.п.).

На втором этапе производится завоз нового плодородного слоя и вскрышных пород с хорошими почвообразующими свойствами, формирова­ние нужного рельефа. Характер проведения этих работ зависит от таких фак-торов как вид последующего использования рекультивируемых площадей, климат, и окружающий рельеф.

На третьем этапе, соответственно, производится приспособление к сельскохозяйственному использованию. Заключается оно, как правило, в обеспечении нужного водного режима, защите от эрозии, оползней и т.д. Третий этап не является обязательным, но поскольку восстановление земель производится в основном под сельскохозяйственные нужды, то он обычно проводится тоже.

Таким образом, нефть представляет собой смесь углеводов и их произ­водных, в целом свыше 1000 индивидуальных органических веществ, каждое из которых может рассматриваться как самостоятельный токсикант. Основной источник загрязнения почвы нефтью – антропогенная деятель­ность. Загрязнение происходит в районах нефтепромыслов, нефтепроводов, а также при перевозке нефти.

Экологические последствия загрязнения почв нефтью и нефтепродук­тами зависят от параметров загрязнения (химическая природа загрязняю­щих веществ, концентрация их в почве, срок от момента загрязнения и др.), свойств почвы (структура почвы, гранулометрический состав, влажность почвы, активность микробиологических и биохимических процессов и др.) и характеристик внешней среды (температура воздуха, ветреность, уровень солнечной радиации и особенно доля ультрафиолетового излучения в свете, растительный покров и пр.). Восстановление загрязненных нефтепродукта­ми земель проходит либо засевом культур, устойчивых к нефтяному загряз­нению, либо завозом незагрязненной почвы, что осуществляется в три ос­новных этапа: удаление загрязненной нефтью почвы, рекультивация нару­шенного ландшафта, мелиорация.

1. Вальков В.Ф., Казеев К.Ш., Колесников С.И. Экология почв: Учебное пособие для студентов вузов. Часть 3. Загрязнение почв. Ростов-на-Дону: УПЛ РГУ, 2004, 54 с.

http://zinref.ru/000_uchebniki/00800ecologia/000_lekcii_ecologia_04/822.htm

Нефтяное загрязнение окружающей среды

Утечки природного газа из трубопроводов вызывают нарушения роста в подземных органах растений. Прежде всего это обусловлено недостатком кислорода. Надземные органы реагируют позднее развитием заметного хлороза листьев. В качестве биоиндикаторов для проверки загрязнения почв газом в окрестностях подземных трубопроводов используют саженцы тополя. При воздействии природного газа высота саженцев в 2,5, поверхность их листьев в 3,5, длина корней в 7 раз меньше, по сравнению с незагрязненными участками.

    http://uchebnikfree.com/ekologicheskiy-monitoring-teoriya/neftyanoe-zagryaznenie-okrujayuschey-32776.html

    5.2 Источники загрязнения окружающей среды полигалогенированными углеводородами.

    Большая часть полигалогенированных углеводородов (ПГУ), за исключением галогенированных диоксинов и фуранов, производилась в виде препаратов для специфического применения, причем нередко в комплексе с другими веществами с различной степенью галогенирования, зависящей от условий дальнейшего использования препарата.

    Большинство производимых ПГУ получают путем хлорирования или бромирования нужного углеводорода в присутствии определенного катализатора.

    Полихлорированные нафталины выпускали в США, Германии, Великобритании и Франции для использования в качестве защитного слоя резиновых изделий. Когда были выявлены токсичные свойства полихлорированных нафталинов, их стали применять в электронике, при изготовлении кабелей и частично в виде пропитки бумаги для конденсаторов в автомобилестроении.

    В большинстве развитых стран полихлорированные бифенилы первоначально использовались в открытых системах в качестве добавки к средствам защиты растений. После запрета их применения в открытых системах полихлорированные и полибромированные бифенилы стали использовать в качестве замедлителей горения многих синтетических и взрывоопасных материалов. Полибромированные бифенилы добавляли в пластмассы, такие как полистирол, полиэстер, полиамидные смолы, лаки и полиуретановые пены, использовавшиеся в производстве огнетушителей. Полибромированные углеводороды применялись при изготовлении мебели и в производстве компьютеров. Как и полихлорированные бифенилы, полибромированные соединения очень устойчивы в окружающей среде, при этом отличаются большей растворимостью в воде и способностью легко выщелачиваться из пластмасс, что определяет их способность быстро распространяться в окружающей среде.

    В отличие от полихлорированных бифенилов микропримеси диоксинов в промышленных продуктах никогда не были конечной целью человеческой деятельности, большая часть из них попадала в среду обитания в результате побочных процессов, например при синтезе хлорорганических соединений, в том числе пестицидов, однако их присутствие в настоящее время в окружающей среде не вызывает сомнений. Можно сказать, что диоксины и родственные им по структуре соединения непрерывно генерируются человеческой цивилизацией и поступают в биосферу. Появилось понятие «диоксиновый фон». Источниками этих ядов являются предприятия практически всех отраслей промышленности, где используется хлор, но наиболее опасны химические, нефтехимические и целлюлознобумажные заводы.

    Полихлорированные дибензидиоксины и дибензофураны являются побочными продуктами синтеза пентахлорфенола, в небольших количествах они присутствуют в гербицидахдефолиантах и консервантах древесины, а также образуются в результате высокотемпературного хлорирования при изготовлении других ПГУ, имеющих широкое применение. Диоксины могут образовываться в процессе отбеливания сырой целлюлозы, бумаги или картона хлором при получении так называемой крафтбумаги.

    Читайте так же:  Нарушение общественного порядка соседями

    Прекращение производства или использование ПГУ только в закрытых системах может уменьшить их распространенность в окружающей среде, однако не приведет к действительному понижению уровня содержания ПГУ в природных объектах в связи с постоянно растущим количеством отходов и мусора, содержащего ПГУ. Вторичными источниками ПГУ служат сточные воды с мест захоронения твердых промышленнобытовых отходов, а также дымовые газы, образующиеся при сжигании или самопроизвольном сгорании мусора. Некоторые соединения могут синтезироваться стихийно — во время лесных пожаров или на открытых горящих объектах. Иными словами, рано или поздно все ПГУ поступят в воды Мирового океана и в почву. А испарения, атмосферные процессы и воздушный транспорт перенесут вредные соединения в еще имеющиеся экологически чистые районы.

    Контаминация окружающей среды происходит при производстве тары и упаковки с использованием в технологии отбеливателей, содержащих хлор. Миграция ПГУ в пищу из пакета зависит от природы продукта. При прямом контакте с упаковкой жиро содержащего продукта, например молока, концентрация ПГУ в нем будет больше, чем в обезжиренном, что обусловлено высокой липофильностью ПГУ и плохой их растворимостью в водных средах.

    В нашей стране одним из основных источников диоксинов являются химических, целлюлознобумажные, металлургические предприятия, где используется токсичный хлор. Деятельность этих предприятий вызвала серьезные загрязнения окружающей среды во многих регионах, в том числе отдаленных от места расположения источника. Они же служат первопричиной диоксинового загрязнения мясомолочных продуктов питания, а так же молока кормящих матерей.

    Наличие диоксинов в сточных водах текстильных производств обусловлено использованием для отбеливания «жавелевой воды» — водных растворов хлорида и гипохлорита натрия.

    Особенно опасны армейские высокотоксичные химические загрязнения. Мощным источником диоксиновых загрязнений является уничтожение химического оружия. Химическое перевооружение 19501960х гг. сопровождалось уничтожением ранее накопленных запасов оружия первого поколения, основу которого составляли хлорсодержащие иприт и люизит. Не менее мощный источник — старты твердотопливных стратегических ракет.

    Особо загрязняют атмосферу диоксинами мусоросжигающие заводы, где работы производятся при температуре 800950 °С. При этом образуется максимальное количество диоксинов. При сжигании 1 кг поливинилхлорида (многие виды линолеума, обоев, пластиковые бутылки) выделяется 50 мкг диоксинов. Эффективное их разрушение возможно только при температурах свыше 11501200 °С.

    Для подготовки к выполнению Российской Федерацией обязательств в рамках Конвенции о трансграничном загрязнении воздуха на большие расстояния по ограничению поступления полихлорированных бифенилов (ПХБ) в окружающую среду Госкомэкологии России в 1999 г. проведена инвентаризация предприятий, производящих и использующих содержащие ПХБ вещества, а также отходов, содержащих ПХБ.

    Согласно данным инвентаризации на декабрь 1999 г., на территории Российской Федерации накоплено около 1,5 тыс. т отходов, содержащих ПХБ, большая часть которых находится в выведенном из эксплуатации электротехническом оборудовании.

    Таким образом, в настоящее время существуют разнообразные источники диоксинов и других полигалогенированных углеводородов, проникающих в окружающую среду различными путями. Суперэкотоксиканты этого вида образуются в результате хозяйственной деятельности человека в промышленно развитых странах, особенно в городах, где сосредоточено большинство населения, и имеют, как правило, техногенное происхождение. Основными источниками поступления диоксинов и родственных соединений из окружающей среды в организм человека являются продукты питания, питьевая вода, а также грудное молоко матери.

    В природной среде данные суперэкотоксиканты, так же как хлорорганические пестициды, достаточно устойчивы. В биосфере ПГУ быстро поглощаются растениями, сорбируются почвой и различными материалами, где практически не изменяются под влиянием физических, химических и биологических факторов среды. Обладая способностью образовывать комплексы, они прочно связываются с органическими веществами почвы, накапливаются в остатках погибших почвенных микроорганизмов и омертвевших частях растений. Из почв диоксины и другие ПГУ выводятся преимущественно механическим путем. Отличающиеся низкой плотностью комплексы диоксинов с органическими веществами, а также содержащие их остатки погибших организмов выдуваются с поверхности почвы ветром, вымываются дождевыми потоками и в итоге устремляются в низменности и акватории, создавая новые очаги заражения: места скопления дождевой воды, озера, донные отложения рек, каналов, прибрежной зоны морей и океанов.

    Период полураспада диоксинов в природе превышает 10 лет. Таким образом, различные объекты окружающей среды являются надежными хранилищами этих токсикантов.

    ПГУ отличаются уникальной биологической активностью, распространяются в окружающей среде далеко за пределы своего первоначального местонахождения. Они хорошо растворимы в органических растворителях и практически нерастворимы в воде, обладают высокой адгезионной способностью, что способствует их накоплению и миграции в виде комплексов с органическими веществами и поступлению в воздух, воду и пищевые продукты. ПГУ обладают способностью аккумулироваться в организме и мигрировать по пищевым цепям. В каждом последующем звене пищевой цепи концентрация полихлорированных бифенилов повышается, поэтому наибольшее количество этих веществ концентрируется в организмах хищников. В организм человека ПГУ поступают в основном с пищевыми продуктами, прежде всего с мясом, молоком и животными жирами. В растительных жирах диоксины практически отсутствуют, так как растения не способны усваивать липофильные вещества.

    Диоксины и другие ПГУ могут накапливаться в продуктах, особенно в жирах, не разрушаются при кулинарной и тепловой обработке, сохраняя токсическое действие. Так как ПГУ могут перемещаться на большие расстояния, проблема диоксинов и диоксиноподобных соединений имеет глобальный характер, и в ее решении должны быть задействованы все страны. В связи с опасностью накопления в организме детей диоксинов, поступающих с молоком и молочными продуктами, в том числе с грудным молоком, Всемирной организацией здравоохранения разработана международная программа исследований по этой проблеме.

    В настоящее время признано недопустимым присутствие диоксинов в продуктах питания, воздухе и питьевой воде. Достичь же этого практически невозможно, поэтому в большинстве развитых стран различными службами контроля и охраны окружающей среды и здоровья человека установлены нормы допустимого поступления диоксинов в организм человека, а также ПДК или уровни их содержания в различных средах (воздухе, воде, почве и т. д.).

    Согласно рекомендациям ВОЗ ДСД диоксинов для человека составляет 10 нг/кг. Аналогичный уровень установлен в России.

    Видео (кликните для воспроизведения).

    http://studfile.net/preview/2890360/page:18/

    Загрязнение окружающей среды углеводородами
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here