Загрязнение окружающей среды серной кислотой

Полезное по теме: "Загрязнение окружающей среды серной кислотой" от специалистов простым языком. Если необходимо уточнить актуальность на 2020 год, а также задать вопрос, то обращайтесь к дежурному юристу.

Экологические проблемы, связанные с производством серной кислоты, и способы их решения.

В начале рассказа важно подчеркнуть, что в сернокислотном производстве перерабатывают и получают такие вещества, как сероводород H2S, оксид серы (IV) SO2, оксид серы (VI) SO3, серную кислоту H2SO4. Эти вещества, присутствуя в воздухе, вредно

отражаются на здоровье людей, губительно действуют на растения, разрушают постройки и т. п. Именно поэтому уделяется серьезное внимание проблеме охраны окружающей среды от загрязнения.

Далее в ответе можно выделить целый ряд экологических проблем, связанных с производством серной кислоты. Первая связана с обжигом серного колчедана FeS2 и других сульфидных руд. При обжиге, протекающем в «кипящем слое», получающийся оксид металла, например Fe2O3, выделяется в атмосферу*:

Это можно объяснить тем, что для аппаратов обжига в «кипящем слое» требуется порошок руды, подвергшийся сильному измельчению. В результате обжига образуется оксид железа или другого металла с очень маленькими частицами. С улавливанием этих частиц фильтры могут не справиться. Частицы оксида могут попасть в атмосферу при выгрузке из печи. Попадание в атмосферу измельченных оксидов железа или других металлов называют металлизацией атмосферы.

При производстве серной кислоты в атмосферу попадает много оксида серы (IV):

Это связано с тем, что производственные установки не всегда герметичны, а также с тем, что иногда автоматические системы управления не справляются с работой, что приводит к аварийным выбросам.

Для производства серной кислоты нередко используется сера, получаемая из сероводорода (это вещество является отходом ряда производств). Производится сера с помощью неполного окисления сероводорода Эта технологическая схема настолько несовершенна, что около 20% серы идет на образование оксида серы (IV), который выделяется в атмосферу.

В ходе производства возможны выбросы в атмосферу оксида серы (VI) и серной кислоты:

SO3 + Н2О = H2SO4

Эти выбросы считаются аварийными, но они возможны и, к сожалению, случаются нередко.

Один из способов разрешения экологических проблем — использование технологических схем, сводящих к минимуму загрязнение атмосферы:

1) непрерывность процесса;

2) циркуляционные процессы (непрореагировавшие вещества возвращаются в сферу реакции);

3) принцип противотока (увеличивается площадь поверхности реагирующих веществ и скорость реакции);

4) комплексное использование сырья, безотходная технология;

5) выбор оптимального сырья и режима его переработки.

Так, например, в мире около 80% серной кислоты производится из серы, а не из пирита FeS2. Это позволяет избежать металлизации атмосферы.

Еще один важный путь — это совершенствование технологического оборудования, в частности различных фильтров и поглотителей. Большое значение имеет профилактический ремонт оборудования, а также установка современных автоматических систем управления производством.

Экологические проблемы, связанные с производством серной кислоты, и способы их решения

В начале рассказа важно подчеркнуть, что в сернокислотном производстве перерабатывают и получают такие вещества, как сероводород H2S, оксид серы (IV) SO2, оксид серы (VI) SO3, серную кислоту H2SO4. Эти вещества, присутствуя в воздухе, вредно

отражаются на здоровье людей, губительно действуют на растения, разрушают постройки и т. п. Именно поэтому уделяется серьезное внимание проблеме охраны окружающей среды от загрязнения.

Далее в ответе можно выделить целый ряд экологических проблем, связанных с производством серной кислоты. Первая связана с обжигом серного колчедана FeS2 и других сульфидных руд. При обжиге, протекающем в «кипящем слое», получающийся оксид металла, например Fe2O3, выделяется в атмосферу*:

Это можно объяснить тем, что для аппаратов обжига в «кипящем слое» требуется порошок руды, подвергшийся сильному измельчению. В результате обжига образуется оксид железа или другого металла с очень маленькими частицами. С улавливанием этих частиц фильтры могут не справиться. Частицы оксида могут попасть в атмосферу при выгрузке из печи. Попадание в атмосферу измельченных оксидов железа или других металлов называют металлизацией атмосферы.

При производстве серной кислоты в атмосферу попадает много оксида серы (IV):

Это связано с тем, что производственные установки не всегда герметичны, а также с тем, что иногда автоматические системы управления не справляются с работой, что приводит к аварийным выбросам.

Для производства серной кислоты нередко используется сера, получаемая из сероводорода (это вещество является отходом ряда производств). Производится сера с помощью неполного окисления сероводорода Эта технологическая схема настолько несовершенна, что около 20% серы идет на образование оксида серы (IV), который выделяется в атмосферу.

В ходе производства возможны выбросы в атмосферу оксида серы (VI) и серной кислоты:

SO3 + Н2О = H2SO4

Эти выбросы считаются аварийными, но они возможны и, к сожалению, случаются нередко.

Один из способов разрешения экологических проблем — использование технологических схем, сводящих к минимуму загрязнение атмосферы:

1) непрерывность процесса;

2) циркуляционные процессы (непрореагировавшие вещества возвращаются в сферу реакции);

3) принцип противотока (увеличивается площадь поверхности реагирующих веществ и скорость реакции);

4) комплексное использование сырья, безотходная технология;

5) выбор оптимального сырья и режима его переработки.

Так, например, в мире около 80% серной кислоты производится из серы, а не из пирита FeS2. Это позволяет избежать металлизации атмосферы.

Еще один важный путь — это совершенствование технологического оборудования, в частности различных фильтров и поглотителей. Большое значение имеет профилактический ремонт оборудования, а также установка современных автоматических систем управления производством.

39. Получение металлов из оксидов с помощью восстановителей: водорода, алюминия, оксида углерода (II). Роль металлов и сплавов в современной технике.

В начале ответа целесообразно объяснить, почему металлы часто получают из оксидов. Это связано с тем, что многие металлы распространены в природе в виде оксидов, а также из-за того, что металлы в оксидах проявляют свойства окислителей.

Читайте так же:  Проблема загрязнения окружающей среды мусором

Далее при иллюстрации способов восстановления металлов обращают внимание на составление уравнений химических реакций (по желанию можно указывать переход электронов у окислителя и восстановителя):

Необходимо отметить также, что восстановление водородом используется в основном в лабораториях, реже в промышленности. Это объясняется важностью водорода как сырья для производства аммиака и его относительной дороговизной. Оксид углерода (II) более доступен как один из продуктов при производстве стали. Восстановление алюминием — дорогостоящий процесс, однако с его помощью получают многие цветные металлы высокой степени чистоты. Восстановление металлов из оксидов с помощью алюминия называют алюминотермией.

Касаясь вопроса о роли металлов и сплавов, отмечают, что металлы, благодаря своим свойствам (твердость, механическая прочность, тепло- и электрическая проводимость, пластичность, магнитные свойства и др.), находят широкое применение во всех областях промышленности и в быту. Железо, хоть и является основным металлом современной техники, сдает некоторые свои позиции алюминию и титану. Ядерная энергетика широко использует уран, торий и цирконий. В электротехнике незаменимы медь, вольфрам, молибден. Редкоземельные металлы (№ 58—71) используют в различных отраслях техники: в радиоэлектронике, приборостроении, атомной технике, машиностроении, в стекольной промышленности (оксиды La, Ce, Nd, Pr), в химической промышленности (производство пигментов, лаков, красок; использование в качестве катализаторов и др.), фото- и киноматериалы содержат серебро.

Однако более широкое применение находят сплавы (системы, состоящие из двух и более металлов, а также металлов и неметаллов).

Свойства сплавов отличаются от свойств каждого из металлов, из которых они получены. Например, чистый алюминий — мягкий, ковкий металл. Сплавы алюминия с медью, магнием и марганцем отличаются прочностью и твердостью. Они называются дуралюминами и идут на изготовление корпусов самолетов, речных и морских судов.

Для паяния применяют сплав олова и свинца. Температура плавления этого сплава (припоя) ниже, чем температура плавления олова и свинца, отдельно взятых.

Сплав меди и никеля — мельхиор, блестящий и довольно прочный. По сравнению с медью и никелем обладает высокой химической стойкостью, широко используется для изготовления ювелирных украшений, столовых приборов.

Свойство сплавов можно регулировать, изменяя их состав. Они позволяют увеличить число материалов, обладающих более ценными свойствами, чем чистые металлы.

Сплавы известны человеку с глубокой древности. Уже тогда было замечено, что при сплавлении разных металлов получают соединения, отличающиеся свойствами от исходных веществ. Так, медь и олово образуют бронзу (90% Си, 10% Sn), твердость которой значительно выше, чем твердость просто меди и олова.

В технике используют более 5000 сплавов, но самое большое значение имеют сплавы на основе железа и алюминия. Железо и его сплавы (чугун, сталь, ферросплавы) называют черными металлами, остальные же металлы и их сплавы — цветными.

40. Задача. Определите количество вещества осадка гидроксида меди (II), образующегося при взаимодействии хлорида меди (II) и 10 г раствора гидроксида натрия, с массовой долей 8%.

Дата добавления: 2015-04-24 ; Просмотров: 6719 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Охрана окружающей среды, связанная с производством серной кислоты

Реферат выполнил Бочкарев И.В., 9 ”Г” класс

г. Сургут 1997 год.

Основным сырьем для производства серной кислоты, является сера. Она относится к числу наиболее распространенных числу химических элементов на нашей планете.

Производство серной кислоты происходит в три стадии на первой стадии получают SO2, путем обжига FeS2, затем SO3, после чего на третьей стадии получают серную кислоту.

Научно-техническая революция и связанный с ней интенсивный рост химического производства, вызывает существенные негативные изменения в окружающей среде. Например отравление пресных вод, загрязнение земной атмосферы, истребление животных и птиц. В результате мир оказался в тисках экологического кризиса. Вредные выбросы сернокислых заводов следует оценивать не только по действию содержащегося в них оксида серы (4) на расположенные вблизи предприятия зоны, но и учитывать другие факторы — увеличение количества случаев респираторных заболеваний человека и животных, гибель растительности и подавление ее роста, разрушение конструкций из известняка и мрамора, повышение коррозионного износа металлов. По вине “кислых” дождей повреждены памятники архитектуры (Тадж-Макал).

В зоне до 300 км. от источника загрязнения (SO2) опасность представляет серная кислота, в зоне до 600 км. — сульфаты. Серная кислота и сульфаты замедляют рост с/х культур. Закисление водоемов (весной при таянии снега, вызывает гибель икр и молоди рыб. Помимо экологического ущерба налицо экономический ущерб — громадные суммы каждый год теряются при раскисление почв.

Рассмотрим химические метода отчистки от наиболее распространенных газообразных загрязняющих воздух веществ. Известно более 60 методов. Наиболее перспективны методы, основанные на поглощение оксида серы (4) известняком, раствором сульфита — гидросульфита аммония и щелочным раствором алюмината натрия. Интерес также представляют каталитические методы окисления оксида серы (4) в присутствии оксида ванадия (5).

Особое значение имеет очистка газов от фторсодержащих примесей, которые даже в незначительной концентрации вредно влияют на растительность. Если в газах содержится фтороводород и фтор, то их пропускают через колоны с насадкой противотоком по отношению к 5-10% раствору гидроксида натрия. В течении одной минуты протекают следующие реакции:

Образующийся фторид натрия обрабатывают для регенерации гидроксида натрия:

Мне кажется что всем отходам должно быть придумано повторное применение, т.к. все равно нельзя придумать полностью безотходного производства.

Вклад химии в защиту окружающей среды может стать значительно больше, если будет изучен процесс взаимодействия человека и природы!

Общие научные принципы химического производства на примере промышленного способа получения серной кислоты. Защита окружающей среды от химических загрязнений

Билет№22

Основным сырьем для производства серной кислоты, является сера. Она относится к числу наиболее распространенных числу химических элементов на нашей планете.

Производство серной кислоты происходит в три стадии на первой стадии получают SO2, путем обжига FeS2, затем SO3, после чего на третьей стадии получают серную кислоту.

Читайте так же:  Начало срока исковой давности по кредиту

Научно-техническая революция и связанный с ней интенсивный рост химического производства, вызывает существенные негативные изменения в окружающей среде. Например отравление пресных вод, загрязнение земной атмосферы, истребление животных и птиц. В результате мир оказался в тисках экологического кризиса. Вредные выбросы сернокислых заводов следует оценивать не только по действию содержащегося в них оксида серы (4) на расположенные вблизи предприятия зоны, но и учитывать другие факторы — увеличение количества случаев респираторных заболеваний человека и животных, гибель растительности и подавление ее роста, разрушение конструкций из известняка и мрамора, повышение коррозионного износа металлов. По вине “кислых” дождей повреждены памятники архитектуры (Тадж-Макал).

В зоне до 300 км. от источника загрязнения (SO2) опасность представляет серная кислота, в зоне до 600 км. — сульфаты. Серная кислота и сульфаты замедляют рост с/х культур. Закисление водоемов (весной при таянии снега, вызывает гибель икр и молоди рыб. Помимо экологического ущерба налицо экономический ущерб — громадные суммы каждый год теряются при раскисление почв.

Рассмотрим химические метода отчистки от наиболее распространенных газообразных загрязняющих воздух веществ. Известно более 60 методов. Наиболее перспективны методы, основанные на поглощение оксида серы (4) известняком, раствором сульфита — гидросульфита аммония и щелочным раствором алюмината натрия. Интерес также представляют каталитические методы окисления оксида серы (4) в присутствии оксида ванадия (5).

Особое значение имеет очистка газов от фторсодержащих примесей, которые даже в незначительной концентрации вредно влияют на растительность. Если в газах содержится фтороводород и фтор, то их пропускают через колоны с насадкой противотоком по отношению к 5-10% раствору гидроксида натрия. В течении одной минуты протекают следующие реакции:

Образующийся фторид натрия обрабатывают для регенерации гидроксида натрия:

Мне кажется что всем отходам должно быть придумано повторное применение, т.к. все равно нельзя придумать полностью безотходного производства.

Вклад химии в защиту окружающей среды может стать значительно больше, если будет изучен процесс взаимодействия человека и природы!

Дата добавления: 2015-08-31 ; Просмотров: 4517 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Серный ангидрид, его воздействие на окружающую среду (стр. 1 из 2)

Человеческая деятельность приводит к тому, что загрязнения поступают в атмосферу в основном в двух видах — в виде аэрозолей (взвешенных частиц) и газообразных веществ.

Главные источники аэрозолей — промышленность строительных материалов, производство цемента, открытая добыча угля и руд, черная металлургия и другие отрасли. Общее количество аэрозолей антропогенного происхождения, поступающих в атмосферу в течение года составляет 60 млн. тонн. Это в несколько раз меньше объема загрязнений естественного происхождения (пыльные бури, вулканы).

Гораздо большую опасность представляют газообразные вещества, на долю которых приходится 80-90% всех антропогенных выбросов. Это соединения углерода, серы и азота.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке цветных металлов и производстве серной кислоты. Антропогенное загрязнение серой в два раза превосходит природное. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, зарубежной Европы, европейской части России, Украины. В южном полушарии оно ниже.

С попаданием в атмосферу соединений серы, азота и хлора непосредственно связано выпадение кислотных дождей. Механизм их образования очень прост. Например, триокись серы в воздухе соединяется с парами воды, образуя разбавленную серную кислоту. Мельчайшие капельки кислот диаметром 0,1-1,0 мкм в виде тумана довольно устойчивы и не осаждаются, но они могут служить центром конденсации влаги, сливаться друг с другом и выпадать на землю в виде дождя. Кислотность растворов выражают с помощью водородного показателя — рН. Чистая вода при температуре 20° С имеет рН = 7,0, обычная дождевая вода — в среднем 5,6 (некоторую кислотность ей придает присутствующий в воздухе углекислый газ). Вода кислотных дождей имеет рН 3 /м он вызывает раздражение слизистых оболочек носа, горла, глаз, раздражаются увлажненные участки кожи. Особенно опасны полициклические ароматические углеводороды типа 3,4-бензопирена, образующиеся при неполном сгорании топлива. По данным ряда ученых, они обладают канцерогенными свойствами.

Наконец различные проявления дискомфорта в связи с загрязнением воздуха (неприятные запахи, снижение освещенности и др.) психологически отрицательно действуют на людей.

Серная кислота и экология биосферы (стр. 1 из 2)

Муниципальное общеобразовательное учреждение

и экология биосферы

Выполнила ученица 8-2 класса

Челябинск 2004
Оглавление

1. Производство серной кислоты. 3

2. Свойства серной кислоты. 4

3. Применение серной кислоты. 6

Видео (кликните для воспроизведения).

4. Смог – что это такое. 7

5. Диоксид серы. 7

6. Круговорот серы в биосфере. 8

7. Очистка газов от SO2. 10

8. Контроль атмосферы в г. Челябинске. 10

9. Литература. 12

1.Производство серной кислоты

Весь процесс можно разбить на три последовательных стадии: получение диоксида серы, окисление его до триоксида и поглощение триоксида серы.

Получение диоксида серы

Наиболее распространенным сырьем для получения SO2 является пирит FeS2, который подвергают обжигу:

Обжиг проводят в специальной печи. В результате обжига пирита получается обжиговый газ, который, кроме диоксида серы, содержит кислород, азот, пары воды и другие примеси. Некоторые из этих примесей вредны для последующих процессов производства кислоты, поэтому обжиговый газ подвергают тщательной очистке от твердых частиц и влаги. Осушение газа проводится концентрированной серной кислотой. Иногда в качестве сырья для получения серной кислоты используют диоксид серы, содержащийся в отходящих газах других производств или полученный сжиганием серы.

Читайте так же:  Какой штраф за оскорбление личности в беларуси

Получение триоксида серы

Вторая стадия производства серной кислоты – окисление диоксида серы кислородом воздуха до триоксида. Окисление проводят при температуре 400 – 600 градусов по Цельсию в присутствии катализаторов.

Поглощение триоксида серы

Полученный оксид серы (VI) поступает в поглотительную башню, стенки которой орошаются концентрированной серной кислотой (массовая доля H2SO4 98%). Поглощение триоксида серы водой неэффективно: образуется «туман» из мелких капелек серной кислоты, который долго конденсируется.

Конечный продукт производства – раствор SO3 в серной кислоте, называемый олеумом. Он может быть разбавлен водой до серной кислоты нужной концентрации.

Рис. 1 Схема производства серной кислоты

1-печь для обжига; 2,3-пылеулавливатели; 4-осушительная башня; 5-контактный аппарат; 6-поглотительная башня.

2.Свойства серной кислоты

Серная кислота представляет собой бесцветную вязкую жидкость, плотность 1,83 г/мл (20 0 С). Температура плавления серной кислоты составляет 10,3 0 С, температура кипения 296,2 0 С.

Химические свойства серной кислоты во многом зависит от ее концентрации. В лабораториях и промышленности применяют разбавленную и концентрированную серную кислоту, хотя это деление условно (четкую границу между ними провести нельзя).

Взаимодействие с металлами

Разбавленная серная кислота взаимодействует с некоторыми металлами, например с железом, цинком, магнием, с выделением водорода:

Некоторые малоактивные металлы, такие как медь, серебро, золото, с разбавленной серной кислотой не реагируют.

Концентрированная серная кислота является сильным окислителем. Она окисляет многие металлы. Продуктами восстановления кислоты обычно является оксид серы (IV), сероводород и сера (H2S и S образуется в реакциях кислоты с активными металлами — магнием, кальцием, натрием, калием и др.). Примеры реакций:

Серная кислота высокой концентрации (практически безводная) не взаимодействует с железом в результате пассивации металла. Явление пассивации связанно с образованием на поверхности металла прочной сплошной пленки, состоящей из оксидов или других любых соединений, которая препятствует контакту металла с кислотой. Благодаря пассивации можно перевозить и хранить концентрированную серную кислоту в стальной таре. Концентрированная серная кислота пассивирует также алюминий, никель, хром, титан.

Взаимодействие с неметаллами

Концентрированная серная кислота может окислять неметаллы, например:

Окислительные свойства концентрированной серной кислоты могут также проявлятся с некоторыми сложными веществами – восстановителями, например:

Взаимодействие с основными оксидами и основаниями

Серная кислота проявляет все типичные свойства кислот. Так, она реагирует с основными и амфотерными оксидами и гидроксидами с образованием солей. Как двусоставная кислота H2SO4 образует два типа солей: средние соли – сульфаты и кислые соли – гидросульфаты. Примеры реакций:

Гидросульфаты образуются, когда кислота берется в избытке. Многие соли серной кислоты выделяются из растворов виде кристаллогидратов, например

Взаимодействие с солями

С некоторыми солями кислота вступает в реакции обмена, например:

Последняя реакция является качественной на серную кислоту и ее соли: об их присутствии в растворе судят по образованию белого осадка BaSO4, который практически не растворяется в концентрированной азотной кислоте.

Взаимодействие с водой

При растворение в воде серная кислота активно взаимодействует с ней образуя гидраты:

Благодаря способности связывать воду серная кислота является хорошим осушителем.

3. Применение серной кислоты

Серная кислота – важнейший продукт химической промышленности. Она находит применение в производстве минеральных удобрений, волокон, пластмасс, красителей, взрывчатых веществ, в металлургии при получении меди, никеля, урана и других металлов. Используется как осушитель газов.

Большое практическое применение из солей серной кислоты имеют различные сульфаты. Медный и железный купоросы CuSO4×5H2O и FeSO4×7H2O используются в сельском хозяйстве для борьбы с вредителями растений, в производстве красок, для пропитки древесины в качестве антисептического средства. Купоросами называют кристаллогидраты сульфатов некоторых металлов (меди, железа, цинка и никеля).

Гипс CaSO4×2H2O и сульфат кальция CaSO4 используют в строительстве, медицине и других областях. Из гипса при прокаливании получают алебастр CaSO4×0,5H2O:

Алебастр, смешанный с водой, быстро затвердевает, превращаясь в гипс:

Сульфат натрия Na2SO4 используется в производстве стекла. Сульфаты калия K2SO4 и аммония (NH4)2SO4 применяют как удобрения. Сульфат бария BaSO4 применяется в производстве бумаги, резины и минеральных красок.

4.Смог – что это такое?

Термин «смог» — производное от английских слов «смоук» (дым) и «фог» («туман»). Обычно термин смог ассоциируется у нас с Лондоном, однако такое явление наблюдается и в других городах.

Смог образуется преимущественно над большими городами в результате действия солнечного света на воздух, загрязненный выбросами углеводородов, оксидов азота и других продуктах сгорания топлива в автомобильных двигателях, на тепловых станциях и т. п. Смог представляет собой туман с голубоватой дымкой, содержащей вредные для человека вещества: диоксиды азота NO2 и серы SO2, монооксид углерода CO. Смог поражает слизистые оболочки глаз и дыхательных путей человека и животных. При больших концентрациях он действует удушающее. В 1952 г. в Лондоне погибло от смога в течение трех-четырех суток более 4000 человек. В1963 г. смог, опустившийся на Нью-Йорк, убил 350 человек. Постепенно гибнет под подушкой коричневого смога мегаполис Мехико.

Потери урожаев сельскохозяйственных культур и природной растительности при систематическом действии смога оценивается в более чем 1 млрд. долларов ежегодно, и цифра эта с каждым годом возрастает.

Загрязнение и охрана окружающей среды при производстве серной кислоты

Серная кислота — один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

Скачать:

Вложение Размер
Загрязнение и охрана окружающей среды при производстве серной кислоты 17.91 КБ

Предварительный просмотр:

Серная кислота — один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

Читайте так же:  Чем грозит оскорбление сотрудника полиции при исполнении

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.

Несмотря на то, что серная кислота давно известна, вначале ее получали сухой перегонкой, поэтому упоминается под названием «купоросное масло», в промышленных количествах она стала производиться относительно недавно.

Сырьём для ее получения служат элементарная сера, сульфиды и сульфаты металлов, сероводород, отходящие газы теплоэлектростанций, использующих неочищенную нефть, и др. Основным сырьём некогда являлся пирит. Так, в 1958 году в СССР из пирита было выработано 71,4 процента серной кислоты, произведённой за этот год. Однако уже к 1970 году доля пирита в производстве серной кислоты в СССР снизилась до 41,8 процента. В последнее время основным сырьём производства серной кислоты является сера. Так, в 2011 году в России из общего количества в 10,7 млн. тонн произведённой серной кислоты 7,9 млн тонн получено из серы и 2,8 млн. тонн — из отходящих газов и в результате нефтепереработки. В мире в 2011 году из общего количества в 223 млн. тонн произведённой серной кислоты 136 млн. тонн получено из серы, 67 млн. тонн — из отходящих газов и 20 млн. тонн — из пирита. Лидером по производству серной кислоты в мире на 2011 год являлась КНР — 74 млн. тонн в год.

Основные стадии получения серной кислоты

Основные стадии получения серной кислоты включают:

  1. Сжигание или обжиг сырья в кислороде с получением SO2
  2. Очистка от примесей газа
  3. Окисление SO2 в SO3
  4. Абсорбция SO3 водой.

C XIV века серную кислоту получали так называемым «камерным» методом, в основе которой лежала реакция горения на воздухе смеси серы и калийной селитры, описанная алхимиком Валентином. Процесс проводился в камерах, обитых свинцом, нерастворимым в серной кислоте. Продуктами горения являлись оксиды азота, соли калия и SO3. Последний поглощался водой, находящейся в камере. Таким способом удавалось получить кислоту небольшой крепости, которую концентрировали известными методами. В зависимости от соотношения реагентов получался разный состав твердого остатка. Одна из схем получения камерной серной кислоты, наиболее полно расходующая нитрат калия:

2KNO3 + 2S + 2O2 → K2SO4 + SO3 + NO2 + NO

SO3 + H2O → H2SO4

Промышленные количества камерной серной кислоты получали вначале во Франции, потом в Англии. В СССР камерный способ просуществовал до 1955 г.

После обнаружения каталитической роли окислов азота в реакции образования SO3 от камерного способа стали отказываться в пользу других методов, использующих менее трудоемкий способ получения и окисления SO2.

В настоящее время в промышленности применяют два метода окисления SO2 в производстве серной кислоты: контактный — с использованием твердых катализаторов, и нитрозный (башенный), в котором в качестве катализатора используют оксиды азота. В качестве окислителя обычно используют кислород воздуха. В первом способе реакционная смесь пропускается сквозь слой твердого катализатора, во втором орошается водой или разбавленной серной кислотой в реакторах башенного типа. Вследствие высокой эффективности (производительность, компактность, чистота и стоимость продукта и др.) контактный способ вытесняет нитрозный.

Обнаружены сотни веществ, ускоряющих окисление SO2 до SO3, три лучших из них в порядке уменьшения активности: платина, пятиокись ванадия и окись железа. При этом платина отличается дороговизной и легко отравляется примесями, содержащимися в газе SO2, особенно мышьяком. Окись железа требует высоких температур для проявления каталитической активности (выше 625 гр. C). Таким образом, ванадиевый катализатор является наиболее рациональным, и только он применяется при производстве серной кислоты. Ниже приведены реакции по производству серной кислоты из минерала пирита на катализаторе — оксиде ванадия (V) (V2O5).

4FeS2 + 11O2 → 2Fe2O3 + 8SO2

SO3 + H2O → H2SO4

Нитрозный метод получения серной кислоты

SO2 + NO2 → SO3 + NO↑.

При реакции SO3 с водой выделяется огромное количество теплоты, и серная кислота начинает закипать с образованием «туманов» SO3 + H2O = H2SO4 + Q. Поэтому SO3 смешивается с H2SO4, образуя раствор SO3 в 91% H2SO4 — олеум.

Научно-техническая революция и связанный с ней интенсивный рост химического производства, вызывает существенные негативные изменения в окружающей среде. Например, отравление пресных вод, загрязнение земной атмосферы, истребление животных и птиц. В результате мир оказался в опасности.

Для того, чтобы не загрязнять окружающую среду отходами от производства серной кислоты, должно быть придумано повторное применение, т.к. все равно нельзя придумать полностью безотходного производства. Вклад химии в защиту окружающей среды может стать значительно больше, если будет изучен процесс взаимодействия человека и природы.

Один из способов разрешения экологических проблем — использование технологических схем, сводящих к минимуму загрязнение атмосферы:

  1. непрерывность процесса;
  2. циркуляционные процессы (непрореагировавшие вещества возвращаются в сферу реакции);
  3. принцип противотока (увеличивается площадь поверхности реагирующих веществ и скорость реакции);
  4. комплексное использование сырья, безотходная технология;

выбор оптимального сырья и режима его переработки.

Так, например, в мире около 80% серной кислоты производится из серы, а не из пирита FeS2. Это позволяет избежать металлизации атмосферы.

Еще один важный путь — это совершенствование технологического оборудования, в частности различных фильтров и поглотителей. Большое значение имеет профилактический ремонт оборудования, а также установка современных автоматических систем управления производством.

Серный ангидрид, его воздействие на окружающую среду

Человеческая деятельность приводит к тому, что загрязнения поступают в атмосферу в основном в двух видах — в виде аэрозолей (взвешенных частиц) и газообразных веществ.

Главные источники аэрозолей — промышленность строительных материалов, производство цемента, открытая добыча угля и руд, черная металлургия и другие отрасли. Общее количество аэрозолей антропогенного происхождения, поступающих в атмосферу в течение года составляет 60 млн. тонн. Это в несколько раз меньше объема загрязнений естественного происхождения (пыльные бури, вулканы).

Читайте так же:  Неисполнение решения суда администрацией города

Гораздо большую опасность представляют газообразные вещества, на долю которых приходится 80-90% всех антропогенных выбросов. Это соединения углерода, серы и азота.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке цветных металлов и производстве серной кислоты. Антропогенное загрязнение серой в два раза превосходит природное. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, зарубежной Европы, европейской части России, Украины. В южном полушарии оно ниже.

С попаданием в атмосферу соединений серы, азота и хлора непосредственно связано выпадение кислотных дождей. Механизм их образования очень прост. Например, триокись серы в воздухе соединяется с парами воды, образуя разбавленную серную кислоту. Мельчайшие капельки кислот диаметром 0,1-1,0 мкм в виде тумана довольно устойчивы и не осаждаются, но они могут служить центром конденсации влаги, сливаться друг с другом и выпадать на землю в виде дождя. Кислотность растворов выражают с помощью водородного показателя — рН. Чистая вода при температуре 20° С имеет рН = 7,0, обычная дождевая вода — в среднем 5,6 (некоторую кислотность ей придает присутствующий в воздухе углекислый газ). Вода кислотных дождей имеет рН 3 /м он вызывает раздражение слизистых оболочек носа, горла, глаз, раздражаются увлажненные участки кожи. Особенно опасны полициклические ароматические углеводороды типа 3,4-бензопирена, образующиеся при неполном сгорании топлива. По данным ряда ученых, они обладают канцерогенными свойствами.

Наконец различные проявления дискомфорта в связи с загрязнением воздуха (неприятные запахи, снижение освещенности и др.) психологически отрицательно действуют на людей.

1) Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие. – М.: ACADEMA, 2002. – 480с.

Производство серной кислоты — источник загрязнения природной среды, приводящий к экологическим проблемам

Серная кислота относится к категории двухосновных кислот и представляет собой тяжелую, бесцветную маслянистую жидкость, не имеющую запаха, с кислым вкусом. Производство серной кислоты является одним из источников загрязнения природной среды, влияющее на атмосферу, почву, растительность, здоровье человека.

Загрязнение окружающей среды при производстве серной кислоты

Получают кислоту контактным способом, окислением диоксида серы — сернистого газа, образующегося в результате сжигания серного колчедана (пирита) до серного ангидрида и последующего взаимодействия с водой. Экологические проблемы производства серной кислоты связаны не только с выпускаемой продукцией, но и вредными выбросами в атмосферу, отходами производства, образованными в процессе выполнения технологических операций.

Вредные выбросы в атмосферу

Основные источники выбросов связаны с производственным процессом серной кислоты.

Так, при обжиге серного колчедана или других сульфидных руд в кипящем слое образуется оксид железа, имеющий очень маленькие частицы. Их улавливание фильтрами не всегда эффективно. При выгрузке из печи компоненты оксида металла попадают в атмосферу. Этот процесс называют «металлизацией атмосферы». Окись железа может усугубить аллергические заболевания дыхательной системы.

Попадание в атмосферу оксида серы (другие названия — двуокись серы, сернистый ангидрид, диоксид серы, сернистый газ) связано с проблемами герметичности производственных установок и нечеткой работой автоматических систем, приводящей к аварийным выбросам. Еще один способ выделения в атмосферу оксида серы связан с использованием для производства серной кислоты серы, полученной из сероводорода с помощью несовершенной технологической схемы (20% серы уходит на образование оксида серы).

Загрязнение атмосферного воздуха также происходит вследствие складирования огарка серного колчедана. Над отвалами фиксируется периодическое превышение предельно-допустимой концентрации сернистого газа и хлористого водорода.

Влияние на флору

Сернистый газ — наиболее распространенный токсикант атмосферного воздуха. Особенно токсично соединение для растений. Влияние проявляется в следующем:

  1. В первой фазе происходят изменения в буферной системе.
  2. Вторая фаза связана с торможением фотосинтеза растений.
  3. В последующих фазах снижается ферментативная активность.

Сернистый газ способствует повышению кислотности клеточного сока растений, что приводит к физиологическим нарушениям.

Острое повреждение растений диоксидом серы проявляется возникновением белесых пятен на широколистных растениях, а на листьях с продольным жилкованием — обесцвеченных некротических полос.

Хроническим проявлением считается обесцвечивание хлорофилла, способствующее пожелтению листьев и возникновению бурой или красной окраски.

Влияние двуокиси серы также проявляется замедлением роста и снижением продуктивности.

Экспериментальными исследованиями установлено, что самой низкой поглощаемостью диоксида серы обладают тополь черный и ива белая, что способствует их большей устойчивости в районах, расположенных рядом с объектами производства серной кислоты.

Негативное влияние на здоровье человека

Возможные проявления вызваны воздействием повышенной концентрации диоксида серы в атмосфере на организм человека. Это могут быть:

  1. Существенное увеличение заболеваний дыхательных путей.
  2. Воздействие на слизистые оболочки, проявляющееся воспалением носоглотки.
  3. Кашель, бронхиты, боль в горле, хрипота.

Особенно чувствительны к диоксиду серы лица, страдающие астмой и хроническими болезнями дыхательных путей.

Непосредственный контакт с серной кислотой при ее производстве связан со следующей опасностью:

  1. Вдыхание паров может вызвать раздражение слизистой оболочки гортани и носоглотки, раздражение и ожог глаз, боль в горле, носовое кровотечение, отек голосовых связок, охриплость голоса, затрудненное дыхание.
  2. Попадание на кожу чревато возникновением химических ожогов, трудно поддающихся лечению.
Видео (кликните для воспроизведения).

При случайном проникновении серной кислоты внутрь организма смертельная доза составляет 5 мг.

Источники

Загрязнение окружающей среды серной кислотой
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here